shadowing and

improving daylight access.

PASSIVE GREEN BUILDING CASE STUDIES

SITE PLANNING

Cold Water Extraction Well -

STRATEGIC LANDSCAPING

GREEN ROOF FUNCTION

Heriot-Watt University features a landmark 300m by 30m green roof, the first of its kind in Malaysia, designed as a key part of its sustainable strategy to enhance aesthetics, reduce heat, improve insulation, and support water conservation through rainwater collection.

GRASS TYPE

The green roof is planted with Japanese Carpet Grass, a groundcover species selected for its adaptability to Malaysia's **tropical climate** and its functional advantages for rooftop landscaping.

GRASS MAINTENANCE

Grass maintenance keeps the green roof healthy, prevents overgrowth, and ensures proper drainage in Malaysia's tropical climate.

04 Water Infiltrates the Soil

05 Excess Water Drains Off

SURROUNDING LANSCAPING

Environmental Buffer

Noise Reduction

Despite different plant palettes, both projects use trees with large canopies, dense foliage, and strong root systems to blend with their surroundings and improve comfort and environmental quality.

Heriot-Watt University

Shade & Temperature Regulation

Transoceánica Building

WATER FEATURES Both projects use water features - Putrajaya Lake and an artificial wetland lagoon, not only for flood control and evaporation.

biodiversity, but also to enhance cooling through natural down surrounding 4 4 4 4

GREEN ROOF FUNCTION

The green roof is built above an underground parking area, cleverly disguising infrastructure and transforming it into a walkable, park-like space.

The building uses a diverse mix of native and adaptive grasses and

groundcovers, carefully selected for their resilience in a Mediterranean climate and their functional roles in roof stabilization, temperature regulation, aesthetics, and biodiversity support.

FACADE DESIGN

02 Window-to-Wall Ratio

70% window-to-wall ratio maximises natural light with a glass-dominated facade.

02 Screens & Louvers **Perforated Screens**

• Allows airflow

from rain/debris.

- Diffuses light, reduces glare. Allow ventilation for thermal comfort
- Modern, decorative touch to facade **Aluminium Louvers**

Both projects use native, climate-adapted landscaping to provide key environmental buffer functions.

Windbreaks

GLASS FACADE

Privacy Screening

02 Window-to-Wall Ratio

80% window-towall ratio maximizes natural light, offers expansive views.

80%

SHADING SYSTEMS 01 Screens & Louvers

Automated Shading Devices

Adjust based on sunlight intensity and **angle**, allowing for more precise **control** of light entry optimizing performance for both summer and winter.

High-performance glazing admits light while **filtering heat Shading System** and **UV**, enhancing comfort and reducing cooling load.

by Hunter Douglas The Quiebravista Woodscreen 85 features

Diverted High-angle

Quiebravista Woodscreen 85

horizontal wooden slats on aluminum supports for sun shading.

DAYLIGHT

East & west facades receives strong low-angle sunlight in the morning and afternoon.

Designed to handle the tropical climate, it focuses in capturing diffuse light on the main **north-south** facade, avoiding direct sunlight on the east-west facade.

DAYLIGHTING MECHANISM 01 High Windows

Captures low-angle sunlight near the

02 Skylight Brings **natural sunlight** into interiors and the atrium, reducing daytime reliance on artificial lighting.

The skylight channels daylight into the light well where reflective surfaces and selective glazing enhance and distribute illumination.

03 Lightwells

MATERIAL REFLECTANCE 01 Light-Colored Materials

Both buildings utilize light-colored materials to enhance natural light distribution within the interior, minimizing the need for artificial lighting and reducing indoor heat absorption.

Light Reflectance Value (LRV) Night Blue Grey

LRV, so they reflect more sunlight and help reduce heat absorption indoors.

WATER INTEGRATION

Reflects approximately

70-80% of sunlight

The building's long **North-facing** facades receive

TEMPERATE CLIMATIC ADAPTATION

Adapts to the temperate **South-facing** facades climate, it focuses on support passive capturing direct light on heating by admitting north-south facade to solar radiation during optimise solar energy. colder months.

DAYLIGHTING MECHANISM

01 Extensive Use of Glass Facade Original full glass facade designed

to maximize 80% natural light. glass, mainly on the block direct north and south sides, to

maximize winter sunlight comfort while keeping daylight. and natural lighting. **02** Central Atrium The building has **two** main wings

GLASS WITH LOUVERS

maximize daylight, and enhance visual comfort and spatial flow.

VENTILATION

Both buildings integrate water features as part of their natural

cooling strategies, utilizing surrounding water sources to enhance

cooling and regulate the indoor climate through evaporative

WIND PATTERN

Putrajaya has two monsoon seasons: the Northeast Monsoon (Dec-Mar) with winds from the **NE**, and the Southwest Monsoon (Jun-Sep) with winds from the **SW**. Winds typically range from 5–20 km/h, with occasional gusts up to 30 km/h during seasonal shifts.

STACKED VENTILATION

Vertical voids expel warm air, pulling in cool air from courtyards, while open staircases and perforated landings improve crossventilation, reducing indoor temperatures by 3-5°C with 6-12 air changes per hour.

02 Variable refrigerant flow (VRF)

Adjusts refrigerant flow for zoned heating/cooling and energy efficience

> Heating area Cooling area

WIND PATTERN

The **dominant** winds come from the **west** (W) and southwest (SW), with speeds mainly ranging from 5-10 km/h, and occasional gusts from west-southwest (WSW) reaching 10-20 km/h.

STACKED VENTILATION

A full-height atrium acts as a thermal shaft, drawing light and enhancing ventilation through natural temperature and pressure differences, reducing mechanical cooling needs. 02 Warm air rises

CROSS VENTILATION

The building's open-plan layout and operable windows enable natural cross ventilation, ensuring steady air circulation and reducing reliance on **mechanical cooling** during moderate weather conditions.

ACTIVE VENTILATION

The geothermal system uses 12°C well water to pre-cool fresh air, reducing energy use and supporting passive cooling

TAYLOR'S UNIVERSITY

impact.

GROUP 8: https://drive.google.com/drive/folders/1DR1GEgh2uASTGly5KnOWSa3kbXa6PpaH?usp=sharing

0358281 TAN YUE TUNG

0358766 TEA HE YING

0349422 YEO XU WEN

0358757 SEE TOO CHENG KAI 0357052 YONG SHAN WEI 0369797 EUNICE LOW YONG ZHEN